Please check the examination details belo	w before ente	ering your candidate information
Candidate surname		Other names
Centre Number Candidate Number Pearson Edexcel Level		
Tuesday 18 June 202	24	
Morning (Time: 1 hour 45 minutes)	Paper reference	9CH0/02
Chemistry Advanced PAPER 2: Advanced Orga	nic and	Physical Chemistry
You must have: Scientific calculator, Data Booklet, rule	r	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 90.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- For the question marked with an **asterisk** (*), marks will be awarded for your ability to structure your answer logically, showing the points that you make are related or follow on from each other where appropriate.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.

Turn over

Answer ALL questions.

Some questions must be answered with a cross in a box ⋈. If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

- This question is about organic compounds that contain a halogen atom or a nitrogen atom.
 - (a) Equal amounts of four bromoalkanes were added to separate test tubes containing 2 cm³ of a silver nitrate solution.

The mixtures were heated in a water bath.

Which bromoalkane would be	the first to form a	precipitate?
----------------------------	----------------------------	--------------

(1)

- X 1-bromobutane
- X 2-bromobutane
- X 1-bromo-2-methylpropane
- X **D** 2-bromo-2-methylpropane
- (b) Which pair of reactants will form an *N*-substituted amide?

(1)

- X A CH₃COCI and NH₃
- X CH₃CH₂OH and NH₃
- X C CH₃COCI and CH₃NH₂
- X **D** CH₃CH₂OH and CH₃NH₂

(c) Ammonia reacts with bromoethane as shown.

$$2NH_3 \ + \ CH_3CH_2Br \ \rightarrow \ NH_4Br \ + \ CH_3CH_2NH_2$$

(i) Explain, by referring to the reaction mechanism, the roles of ammonia in the formation of each of the products of this reaction.

(3)

(ii) What conditions are needed for this reaction?

(1)

		Method of heating	Solvent
X	A	heat in a sealed tube	ethanol
X	В	heat under reflux	ethanol
X	C	heat in a sealed tube	water
X	D	heat under reflux	water

(d) The halogenoalkane, 1-bromobutane, can be formed by the reaction of butan-1-ol with sodium bromide and sulfuric acid.

$$\mathsf{CH_3CH_2CH_2CH_2OH} \ + \ \mathsf{NaBr} \ + \ \mathsf{H_2SO_4} \ \to \ \mathsf{CH_3CH_2CH_2CH_2Br} \ + \ \mathsf{NaHSO_4} \ + \ \mathsf{H_2O}$$

Calculate the atom economy, by mass, for the formation of 1-bromobutane. Give your answer to **one** decimal place.

$$[A_r \text{ values: H} = 1.0 \text{ C} = 12.0 \text{ O} = 16.0 \text{ Na} = 23.0 \text{ S} = 32.1 \text{ Br} = 79.9]$$
 (2)

(Total for Question 1 = 8 marks)

A Grignard reagent is formed by reacting bromoethane with magnesium under reflux.				
		$CH_3CH_2Br + Mg \rightarrow CH_3CH_2MgBr$		
(a) Th	e mo	est suitable solvent for this reaction is	(4)	
X	A	cyclohexane	(1)	
X	В	ether		
X	C	ethyl ethanoate		
X	D	hexane		
(b) Sta	ate th	ne use of Grignard reagents in organic synthesis.	(1)	
(c) In	their	reactions, the Grignard reagent is best described as	(1)	
X		a carbocation		
×	В	an electrophile		
X		a nucleophile		
	D	a radical		
d) Gr	ignar	d reagents must be kept dry.		
		the organic product that forms when CH ₃ CH ₂ MgBr reacts with water.		
Ju	stify y	your answer by considering the polarity of both CH₃CH₂MgBr and water.	(2)	

(e) Which compound will form a **tertiary** alcohol when it reacts with a Grignard reagent, followed by acid hydrolysis?

(1)

- A CO₂
- B HCHO
- ☑ D CH₃COCH₃

(Total for Question 2 = 6 marks)

- **3** This question is about hydrogen peroxide, H_2O_2 .
 - (a) Draw a dot-and-cross diagram of a molecule of hydrogen peroxide.

(1)

(b) Hydrogen peroxide decomposes to form water and oxygen.

$$2H_2O_2(aq) \rightarrow 2H_2O(I) + O_2(g)$$

Explain, using oxidation numbers, why the decomposition of hydrogen peroxide is classified as a disproportionation reaction.

(3)

(c) The decomposition of hydrogen peroxide is catalysed by iodide ions, I⁻(aq).

The kinetics of this reaction were investigated using different concentrations of hydrogen peroxide and iodide ions.

The results are shown in the table.

Experiment	[H ₂ O ₂ (aq)] / mol dm ⁻³	[I ⁻ (aq)] / mol dm ⁻³	Rate / mol dm ⁻³ s ⁻¹
1	0.100	0.0500	8.90×10^{-7}
2	0.400	0.0500	3.56 × 10 ⁻⁶
3	0.200	0.100	3.56 × 10 ⁻⁶

(i)	Deduce the order of reaction with respect to hydrogen peroxide and to
	iodide ions.

(2)

Order with respect to hydrogen peroxide

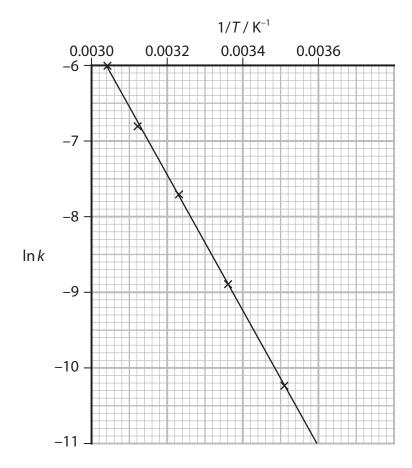
Order with respect to iodide ions

(ii) Write the rate equation for the reaction using your answer to (c)(i).

(1)

(iii) Calculate the rate constant, *k*, using data from Experiment 3. Include units in your answer.

(2)



own of hydrogen peroxide with iodide ions as a catalyst is th stration 'Elephant's Toothpaste'. ce of a detergent results in a rapid eruption of foam as the ox	
e the test and the positive result that confirms the gas produen.	iced (1)
m produced often has a slight yellow/brown colour. what causes this colour, which is not caused by the deterger	nt. (2)
s C	tration 'Elephant's Toothpaste'. The of a detergent results in a rapid eruption of foam as the oxite the test and the positive result that confirms the gas produin. In produced often has a slight yellow / brown colour.

(e) The effect of temperature on the rate of the decomposition of hydrogen peroxide without a catalyst was also investigated.

A graph of ln *k* against 1/temperature (1/*T*) was plotted.

(i) Determine the gradient of the graph. Include units in your answer. You must show your working on the graph.

(3)

(ii) Calculate the activation energy, E_a , of the reaction, in kJ mol⁻¹, using your answer to (e)(i) and the Arrhenius equation shown.

$$\ln k = -\frac{E_{\rm a}}{R} \times \frac{1}{T} + \text{constant}$$

[Gas constant (R) = 8.31 J mol⁻¹ K⁻¹]

(1)

(f) Another way to write the Arrhenius equation is shown.

$$k = Ae^{-E_a/RT}$$

The constant A is often called the collision factor as it is linked to the orientation of the particles colliding in a reaction.

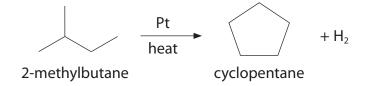
The decomposition of hydrogen peroxide is also catalysed by aluminium.

Calculate a value for A at 370 K, for the catalysed decomposition of hydrogen peroxide with an activation energy, E_a , of $5.02 \times 10^4 \, \text{J} \, \text{mol}^{-1}$ and a numerical value for the rate constant of 1.60×10^{-3} . Units are **not** required.

(2)

(Total for Question 3 = 18 marks)

*4	Discuss the role society, and chemists in particular, can play in order to contribute to a more sustainable use of polymers.	
	Your answer should consider	
	the different ways of dealing with waste polymers	
	how chemists can limit the problems caused by the disposal of polymers.	(6)



- **5** This question is about cyclic compounds.
 - (a) The hydrocarbon cyclopentane is present in some fuels and is used in the manufacture of insulation for freezers.

cyclopentane

Cyclopentane can be synthesised by passing 2-methylbutane over a hot platinum catalyst.

Name the type of reaction that takes place in this synthesis.

(1)

(b) The energy density of a fuel is defined as the energy released per dm³ of the liquid fuel burned.

A sample of cyclopentane with a mass of 30.0 g releases 1.41 MJ of energy.

Calculate the energy density of cyclopentane. Include units in your answer.

[Density of cyclopentane = $0.751 \,\mathrm{g \, cm^{-3}}$]

(2)

(c) Under appropriate conditions, cyclopentane reacts with bromine to form bromocyclopentane.

$$+ Br_2$$
 $+ HBr$ cyclopentane bromocyclopentane

(i) State the condition needed to initiate the reaction.

(1)

(ii) Complete the table showing the steps of the mechanism of this reaction. Curly arrows are not required.

(3)

Step	Equation(s)
Initiation	
Propagation	1. + Br* + HBr 2.
Termination	Br

(iii) Draw the structure of the organic product of an alternative termination step.

(1)

(d) Bromocyclopentane forms cyclopentene when heated under reflux with a concentrated solution of potassium hydroxide in ethanol.

(i) Explain why the solvent ethanol is treated with anhydrous sodium sulfate before use in this reaction.

(2)

(ii) Give the name of the reaction shown in the equation.

(1)

(iii) Predict the mechanism for the reaction by adding two curly arrows.

(1)

(Total for Question 5 = 12 marks)

6	Thi	s ques	tion	is about nuclear magnetic resonance (NMR) spectroscopy.	
	(a)	Which	par	rt of the electromagnetic spectrum is used in NMR?	(1)
		×	A	infrared	(1)
		X	В	radio waves	
		X	c	ultraviolet	
		X	D	X-ray	
	(b)	Explai	n wl	hy tetramethylsilane, TMS, is used in NMR spectroscopy.	(2)
	(c)	A seco	onda w re	ary amine, \mathbf{Q} , has the molecular formula $C_6H_{15}N$. esolution 1H NMR spectrum of \mathbf{Q} has three peaks.	
		(i) Sta	ate v	what is meant by the term 'secondary amine'.	(1)
		(ii) D€	educ	te the structure of Q .	(1)

(d) Two cyclic alcohols have the structures shown.

cyclohexane-1,2-diol

cyclohexane-1,3-diol

Show that the ¹³C NMR spectra of these compounds can be used to distinguish between the two alcohols, labelling the diagrams to justify your answer.

(2)

(Total for Question 6 = 7 marks)

7 This question is about polymers, an example of which is neoprene, a synthetic rubber material.

It is formed by the polymerisation of chloroprene.

(a) What is the IUPAC name of chloroprene?

(1)

- A 3-chlorobuta-1,3-diene
- **B** 2-chlorobuta-2,4-diene
- **C** 3-chlorobuta-2,4-diene
- **D** 2-chlorobuta-1,3-diene
- (b) Calculate the volume, **in cm**³, occupied by 10.0 g of chloroprene in the gaseous phase, at 80.0 °C and 205 kPa.

 Give your answer to an appropriate number of significant figures.

[Gas constant (R) = 8.31 J mol⁻¹ K⁻¹]

(5)

(c) Chloroprene is formed by first adding chlorine, Cl₂, to Compound A and then removing hydrogen chloride from the product of this reaction.

(i) Explain how chlorine, Cl₂, can act as an electrophile in Step 1 even though a chlorine molecule is symmetrical. You may find it helpful to include a diagram.

(2)

(ii) Draw the mechanism for Step 1. Include curly arrows, and any relevant lone pairs and dipoles.

(3)

(iii) Chloroprene polymerises to form neoprene as shown.

Give the name of the type of reaction that occurs when chloroprene polymerises.

(1)

(d) Flexible and water-resistant materials can be made by combining neoprene with polyester fabric.

A polyester may be made by the reaction of benzene-1,4-dicarboxylic acid with ethane-1,2-diol.

(i) Explain why ethane-1,2-diol is soluble in water. A detailed description of the forces involved is not required.

(ii) The molar mass of a polyester is 8400 g mol⁻¹.

Calculate the number of polymer molecules in 4.25 mg of this polyester.

[Avogadro constant (L) = $6.02 \times 10^{23} \text{ mol}^{-1}$]

(2)

(iii) A student spilled a small amount of 0.40 mol dm⁻³ sodium hydroxide solution onto a polyester laboratory coat. A hole formed in the laboratory coat as the result of a chemical reaction.

What type of reaction occurred?

(1)

- A dehydration
- B hydrolysis
- **D** redox

(Total for Question 7 = 17 marks)

8 This question is about amino acids and related compounds.

The structures of two amino acids are shown.

- (a) Both amino acids contain a chiral carbon atom.
 - (i) State what is meant by the term 'chiral carbon atom'.


(1)

(ii) Draw diagrams of the two stereoisomers of **alanine**, showing their three-dimensional shape.

(2)

(b) Draw the **skeletal** formulae of the two dipeptides that could form when serine and alanine react.

(2)

(1)

(c) Serine exists as a zwitterion.

What is the formula of this zwitterion?

CH₂OH │

A $H_3N - C - CO_2$

CH₂OH

B H₃N − C − COOH

CH₂OH

Н

C H₂N—C—CO₂ | H

CH₂O⁻

(d) Alanine can be synthesised as shown.

Compound X

Step 1
$$C_2H_5O^-Na^+$$

Compound Y

(i)	Sodium ethoxide, C ₂ H ₅ ONa, needed in Step 1, is formed by the reaction o
	sodium with ethanol.

Write the equation for this reaction. State symbols are not required.

(1)

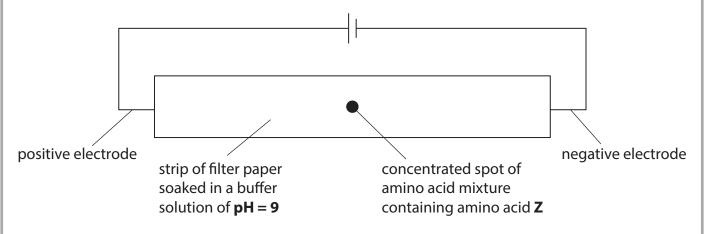
(ii) Name the **two** functional groups present in Compound **Y**.

(2)

(iii) Give the reagent needed and conditions required for Step 3.

(2)

(iv) Calculate the mass of Compound **X** required to make 15.0 g of alanine, assuming the overall yield of the synthesis is 55 %.


(3)

(2)

(e) A mixture of amino acids can be separated using a technique called paper electrophoresis. A simplified diagram is shown.

The movement of the amino acid on the paper depends on any charge on the amino acid, and this is determined by the pH of the buffer solution.

Amino acid **Z** has the structure shown.

amino acid **Z**

Explain in which direction, if any, amino acid Z would move when	a current flows
in the circuit with a buffer solution of $pH = 9$.	

(Total for Question 8 = 16 marks)

TOTAL FOR PAPER = 90 MARKS

10,0	0 (8)	4.0 He helium	20.2 Ne	39.9 Ar argon 18	83.8 Kr krypton 36	131.3 Xe xenon 54	[222] Rn radon 86	pa		
,	,	(77)	19.0 F fluorine 9	35.5 Cl chlorine 17	79.9 Br bromine 35	126.9 I iodine 53	[210] At astatine 85	Elements with atomic numbers 112-116 have been reported but not fully authenticated	175 Lu lutetium 71	[257] Lr lawrencium
-	0	(16)	16.0 O oxygen 8	32.1 S sulfur 16	Se selenium 34	127.6 Te tellurium 52	[209] Po potentium 84	116 have b iticated	173 Yb ytterbium 70	[254] No nobelium
-	n	(15)	14.0 N nitrogen 7	31.0 P	As As arsenic 33	Sb antimony 51	209.0 Bi bismuth 83	tomic numbers 112-116 hav but not fully authenticated	169 Tm thulium 69	[256] Md mendelevium
	4	(14)	12.0 C carbon 6	28.1 Si silicon	72,6 Ge germanium 32	118.7 Sn tin 50	207.2 Pb tead 82	atomic nur but not fi	167 Er erbium 68	[253] Fm fermium
	7	(13)	10.8 B boron 5	27.0 Al aluminium 13	69.7 Ga gallium 31	In In indium 49	204.4 TI thallium 81	ents with	165 Ho holmium 67	[254] Es
3		(12)			65.4 Zn zinc 30	112.4 Cd cadmium 48	200.6 Hg mercury 80	Elem	163 Dy dysprosium 66	[251] [254] Cf Es californium einsteinium
				(11)	63.5 Cu copper 29	Ag silver 47	197.0 Au gold 79	[272] Rg roentgenium	159 Tb terbium 65	[245] Bk berkelium
יווכ ו כווסמור ומפור סו ביכוווכוומ				(01)	58.7 Ni nicket 28	106.4 Pd palladium 46	195.1 Pt platinum 78	Ds darmstadtlum 110	157 Gd gadolinium 64	[247] Cm
2		(6)			58.9 Co cobalt 27	Rh rhodium 45	192.2 Ir iridium 77	[268] Mt meitnerium 109	152 Eu europium 63	[243] Am americium
		1.0 H hydrogen		(8)	55.8 Fe iron 26	Ru Ru ruthenium 44	190.2 Os osmium 76	[277] Hs hassium 108	150 Sm samarium 62	[242] Pu
,					54.9 Mn manganese 25	[98] Tc technetium 43	Re rhenium 75	[264] Bh bohrium 107	[147]. Pm promethium 61	[237] Np neptunium pl
			mass. bol umber	(9)	52.0 Cr chromium 24	95.9 [98] 101.1 Mo Tc Ru molybdenum technetium ruthenium 42 43 44	183.8 W tungsten 74	[266] Sg seaborgium 106	144 Nd neodymium 60	238 U uranium
		Key	relative atomic mass atomic symbol name atomic (proton) number	(5)	50.9 V vanadium 23	92.9 Nb niobium 41	180.9 Ta tantalum 73	[262] Db dubnium 105	141 144 [147] 150 Pr Nd Pm Sm praseodymium neodymium promethium samarium 59 60 61 62	[231] Pa
				3	47.9 Ti titanium 22	91.2 Zr zirconium 40	178.5 Hf hafnium 72	[261] Rf nutherfordium 104	Ce cerium 58	232 Th thorium
	(3)			45.0 Sc scandium 21	88.9 Y yttrium 39	138.9 La* lanthanum 57	[227] Ac* actinium 89			
	7	(2)	9.0 Be berytlium 4	24.3 Mg magnesium 12	40.1 Ca calcium 20	87.6 Sr strontium 38	137.3 Ba barium 56	[226] Ra radium 88	* Lanthanide series	* Actinide series
•		(1)	6.9 Li uthium 3	23.0 Na sodium 11	39.1 K potassium 19	85.5 Rb rubidium 37	132.9 Cs caesium 55	[223] Fr francium 87	• Lanth	* Actin